270,944 research outputs found

    Isolation of poliovirus 2C mutants defective in viral RNA synthesis

    Get PDF
    Two poliovirus mutants were isolated that contain an oligonucleotide linker insertion in the 2C-coding region of the viral genome. One, 2C-31, has a strongly temperature-sensitive phenotype and the other, 2C-32, forms small plaques on HeLa cell monolayers at all temperatures. Both mutants have a severe temperature-sensitive defect in viral RNA synthesis but little effect on the types of viral protein that are made. Temperature shift experiments showed that the 2C function is continuously required for viral RNA synthesis to proceed. The 2C mutants could be complemented in trans by mutants with mutations in other viral proteins. Protein 2C is also the locus of the guanidine resistance and dependence mutants, a drug whose action also affects viral RNA synthesis. Thus, protein 2C is one that is needed continually for viral RNA synthesis and, at least with these temperature-sensitive alleles, can be provided in trans

    Nucleotide sequence and genomic organization of an ophiovirus associated with lettuce big-vein disease

    Get PDF
    The complete nucleotide sequence of an ophiovirus associated with lettuce big-vein disease has been elucidated. The genome consisted of four RNA molecules of approximately 7ò8, 1ò7, 1ò5 and 1ò4 kb. Virus particles were shown to contain nearly equimolar amounts of RNA molecules of both polarities. The 5'- and 3'-terminal ends of the RNA molecules are largely, but not perfectly, complementary to each other. The virus genome contains seven open reading frames. Database searches with the putative viral products revealed homologies with the RNA-dependent RNA polymerases of rhabdoviruses and Ranunculus white mottle virus, and the capsid protein of Citrus psorosis virus. The gene encoding the viral polymerase appears to be located on the RNA segment 1, while the nucleocapsid protein is encoded by the RNA3. No significant sequence similarities were observed with other viral proteins. In spite of the morphological resemblance with species in the genus Tenuivirus, the ophioviruses appear not to be evolutionary closely related to this genus nor any other viral genus

    RNA Control of HIV-1 Particle Size Polydispersity

    Get PDF
    HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP

    A 212-nt long RNA structure in the Tobacco necrosis virus-D RNA genome is resistant to Xrn degradation

    Get PDF
    Plus-strand RNA viruses can accumulate viral RNA degradation products during infections. Some of these decay intermediates are generated by the cytosolic 5′-to-3′ exoribonuclease Xrn1 (mammals and yeast) or Xrn4 (plants) and are formed when the enzyme stalls on substrate RNAs upon encountering inhibitory RNA structures. Many Xrn-generated RNAs correspond to 3′-terminal segments within the 3′-UTR of viral genomes and perform important functions during infections. Here we have investigated a 3′-terminal small viral RNA (svRNA) generated by Xrn during infections with Tobacco necrosis virus-D (family Tombusviridae). Our results indicate that (i) unlike known stalling RNA structures that are compact and modular, the TNV-D structure encompasses the entire 212 nt of the svRNA and is not functionally transposable, (ii) at least two tertiary interactions within the RNA structure are required for effective Xrn blocking and (iii) most of the svRNA generated in infections is derived from viral polymerase-generated subgenomic mRNA1. In vitro and in vivo analyses allowed for inferences on roles for the svRNA. Our findings provide a new and distinct addition to the growing list of Xrn-resistant viral RNAs and stalling structures found associated with different plant and animal RNA viruses.York University Librarie

    Viral Reservoirs in Lymph Nodes of FIV-Infected Progressor and Long-Term Non-Progressor Cats during the Asymptomatic Phase.

    Get PDF
    BackgroundExamination of a cohort of cats experimentally infected with feline immunodeficiency virus (FIV) for 5.75 years revealed detectable proviral DNA in peripheral blood mononuclear cells (PBMCs) harvested during the asymptomatic phase, undetectable plasma viral RNA (FIV gag), and rarely detectable cell-associated viral RNA. Despite apparent viral latency in peripheral CD4+ T cells, circulating CD4+ T cell numbers progressively declined in progressor animals. The aim of this study was to explore this dichotomy of peripheral blood viral latency in the face of progressive immunopathology. The viral replication status, cellular immunophenotypes, and histopathologic features were compared between popliteal lymph nodes (PLNs) and peripheral blood. Also, we identified and further characterized one of the FIV-infected cats identified as a long-term non-progressor (LTNP).ResultsPLN-derived leukocytes from FIV-infected cats during the chronic asymptomatic phase demonstrated active viral gag transcription and FIV protein translation as determined by real-time RT-PCR, Western blot and in situ immunohistochemistry, whereas viral RNA in blood leukocytes was either undetectable or intermittently detectable and viral protein was not detected. Active transcription of viral RNA was detectable in PLN-derived CD4+ and CD21+ leukocytes. Replication competent provirus was reactivated ex vivo from PLN-derived leukocytes from three of four FIV-infected cats. Progressor cats showed a persistent and dramatically decreased proportion and absolute count of CD4+ T cells in blood, and a decreased proportion of CD4+ T cells in PLNs. A single long-term non-progressor (LTNP) cat persistently demonstrated an absolute peripheral blood CD4+ T cell count indistinguishable from uninfected animals, a lower proviral load in unfractionated blood and PLN leukocytes, and very low amounts of viral RNA in the PLN.ConclusionCollectively our data indicates that PLNs harbor important reservoirs of ongoing viral replication during the asymptomatic phase of infection, in spite of undetectable viral activity in peripheral blood. A thorough understanding of tissue-based lentiviral reservoirs is fundamental to medical interventions to eliminate virus or prolong the asymptomatic phase of FIV infection

    Viral RNAs are unusually compact.

    Get PDF
    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly
    • …
    corecore